CHAPTER 1 INTRODUCTION
1.1. Market Definition
1.2. Executive Summary
1.3. The Scope of the Study
CHAPTER 2 RESEARCH METHODOLOGY
2.1. Secondary Research
2.2. Primary Research
2.3. Analytic Tools and Model
2.4. Economic Indicator
2.4.1 Base Year, Base Currency, Forecasting Period
2.5. Expert Validation
2.6. Study Timeline
CHAPTER 3 MARKET ANALYSIS
3.1. Industry Value Chain Analysis
3.2. Porter's Five Force Analysis
3.2.1. Bargaining Power of Buyers
3.2.2. Bargaining Power of Suppliers
3.2.3. Threats of Substitutes
3.2.4. Threats of New Entrants
3.2.5. Degree of Competition
3.3. PESTLE Analysis
3.3.1. Political
3.3.2. Economical
3.3.3. Social
3.3.4. Technological
3.3.5. Legal
3.3.6. Environmental
3.4. SWOT Analysis
3.4.1. Strengths
3.4.2. Weakness
3.4.3. Opportunities
3.4.4. Threats
3.5. Y-O-Y Analysis
CHAPTER 4 MARKET DYNAMICS
4.1. Market Drivers
4.1.1. Increasing incidence of cancer and the threat of nuclear terrorism
4.1.2. Growing security threats to drive the inorganic scintillators market for homeland
security
4.1.3. Rising security budgets of global sporting events and increasing volume of pet/CT scans
4.1.4. Growing safety concerns post the fukushima disaster
4.2. Market Restraints & Challenges
4.2.1. Nuclear power phase-out in some European & Asian economies and a shortage of
nuclear power workforce
4.3. Market Opportunities
4.3.1. Rising focus on nuclear power in developing economies like India to meet energy
demands
4.3.2. Growing demand for a clean & reliable source of electricity generation in China and
Japan’s decision to reverse nuclear phase-out
4.3.3. The proposed increase in the number of nuclear power plants and the introduction of
nuclear power in pacific economies
CHAPTER 5 GLOBAL INORGANIC SCINTILLATORS MARKET – BY TYPE
5.1. Oxide Compounds
5.2. Rare Earth Metals
5.3. Alkali Halides
CHAPTER 6 GLOBAL INORGANIC SCINTILLATORS MARKET – BY
SCINTILLATION MATERIAL
6.1. Lutetium Oxyorthosilicate & Lutetium–Yttrium Oxyorthosilicate
6.2. Bismuth Germanate
6.3. Sodium Iodide
6.4. Cesium Iodide
6.5. Others
CHAPTER 7 GLOBAL INORGANIC SCINTILLATORS MARKET – BY
APPLICATION
7.1. Nuclear Power Plants
7.2. Industrial Applications
7.3. Healthcare
7.4. Homeland Security and Defense
7.5. Others
CHAPTER 8 GLOBAL INORGANIC SCINTILLATORS MARKET - BY
GEOGRAPHY
8.1. Introduction
8.2. North America
8.2.1. U.S.
8.2.2. Canada
8.2.3. Mexico
8.2.4. Costa Rica
8.3. South America
8.3.1. Brazil
8.3.2. Argentina
8.3.3. Chile
8.3.4. Columbia
8.3.5. Others
8.4. Europe
8.4.1. U.K.
8.4.2. Germany
8.4.3. France
8.4.4. Italy
8.4.5. Spain
8.4.6. Russia
8.4.7. Netherlands
8.4.8. Switzerland
8.4.9. Poland
8.4.10. Others
8.5. APAC
8.5.1. China
8.5.2. Japan
8.5.3. India
8.5.4. South Korea
8.5.5. Australia & New Zealand
8.5.6. Malaysia
8.5.7. Singapore
8.5.8. Others
8.6. Middle East & Africa
8.6.1. UAE
8.6.2. Saudi Arabia
8.6.3. Iran
8.6.4. Iraq
8.6.5. Qatar
8.6.6. South Africa
8.6.7. Algeria
8.6.8. Morocco
8.6.9. Nigeria
8.6.10. Egypt
8.6.11. Others
CHAPTER 9 GLOBAL INORGANIC SCINTILLATORS MARKET - COMPANY
PROFILES
9.1. Toshiba Materials Co., Ltd.
9.2. Scintacor, Ltd.
9.3. EPIC Crystal Co., Ltd.
9.4. Amcrys LLC
9.5. Alpha Spectra, Inc.
9.6. Shanghai SICCAS High Technology Corporation
9.7. Nihon Kessho Kogaku Co., Ltd.
9.8. Compagnie de Saint-Gobain S.A.
9.9. Hamamatsu Photonics K.K.
9.10. Dynasil Corporation of America
9.11. Hitachi Metals, Ltd.
9.12. Rexon Components, Inc.
9.13. Detec AS
CHAPTER 10 GLOBAL INORGANIC SCINTILLATORS MARKET - COMPETITIVE
LANDSCAPE
10.1. Market Share Analysis
10.2. Strategies adopted by top companies
10.3. Mergers, Acquisitions, Collaborations & Agreements
CHAPTER 11 MARKET INSIGHTS
11.1. Industry Experts Insights
11.2. Analysts Opinions
11.3. Investment Opportunities
CHAPTER 12 APPENDIX
12.1. List of Tables
12.2. List of Figures